```
P0, vapor pressure of component i pure, mmHg
rmsd
n
t,T temperature,}\mp@subsup{}{}{\circ}\textrm{C},\textrm{K
T , boiling temperature of component i pure at pressure
    P,K
V, molar volume of liquid pure component
\mp@subsup{x}{i}{},\mp@subsup{y}{i}{}\mathrm{ mole fraction composition of component i in the liq-}
    uid and vapor phases
\gamma
\Lambdai, \Lambda| Wilson constants, eq }6\mathrm{ and }
Subscript
i component i
```

Lliterature CIted
(1) Chandrashekara, M. N.; Seshadri, D. N. J. Chem. Eng. Data 1979, 24, 6.
(2) Herington, E. F. G. J. Inst. Pet. 1951, 37, 457.
(3) Burke, D. E.; Willams, G. C.; Plank, C. A. J. Chem. Eng. Data 1964, 9, 212.
(4) Ocon, J.; Tojo, G.; Espada, L. An Quim. 1969, 64, 641.
(5) Boublikova, L.; Lu, B. C. Y. J. Appl. Chem. 1969, 19, 89
(6) Wisnlak, J.; Tamir, A. J. Chem. Eng. Data 1975, 20, 168
(7) Van Ness, H. C. "Classical Thermodynamics of Non-Electrolyte Solutions"; Pergamon Press: London, 1964; pp 122, 125.
(8) TRC Tables, "Selected Values of Properties of Chemical Compounds", and API-44, Selected Values of Hydrocarbon and Related Compounds"; Thermodynamics Research Center Data Project: Col lege Station, TX, 1961.
(9) Tsonopoulos, C. AIChE J. 1974, $20,263$.
(10) Tsonopoulos, C, AIChE J. 1975, 21, 827.
(11) Fredesiund, A.; Gmehling, J.; Rasmussen, P. "Vapor-Liquld Equilibria Using UNIFAC"; Elsevier: Amsterdam, 1977.
(12) Redlich, O.; Kister, A. Ind. Eng. Chem. 1948, 40, 345.
(13) Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127
(14) Wisniak, J.; Tamir, A. Chem. Eng. Scl. 1976, 31, 631.

Vapor-Liquid Equilibrium in the Systems Propyl Bromide-Acetic Acid, Propyl Bromide-Propionic Acid, and Propyl Bromide-Acetic Acid-Propionic Acid

Jalme Wisniak* and Abraham Tamir
Department of Chemical Engineering, Ben-Gurion University, Beer-Sheva 84120, Israel

Abstract

The vapor-llquid equillibria for the thle systems were determined at $\mathbf{7 6 0} \mathbf{~ m m H g}$. Activity coefficlents were calculated by assuming assoclation In the vapor phase. Boiling points of the systems were correlated by emplirical expressions; none of the systems studied exhlbited azeotroplc behavior. Tentative UNIFAC Interaction parameters are reported for the palrs $\mathbf{C O O H}, \mathrm{Br}$ and Br , COOH.

In previous investigations on systems containing fatty acids, we have studled the vapor-liquid equilibrium properties of the systems formic acid-acetic acid-propionic acld (1), waterformic acid-propionic acid (2), water-formic acid-acetic acid (3), water-acetic acid-propionic acid (3), propionic acid-carbon tetrachloride (4), proplonic acid-methyl isobutyl ketone (4), and acetic acid-carbon tetrachloride (5).

Inspection of the UNIFAC parameter table has indicated that the interaction parameters for the acid group COOH and bromine are not available (6). The aim of the present work is to initiate the accumulation of experimental data that will allow filling the missing information. For this purpose we have selected for study the vapor-liquid equilibrium of the systems indicated in the title.

Experimental Section

Purfly of Materlals. Analytical-grade fatty acids (99.5\% +) were purchased from Fluka; propyl bromide ($99.6 \%+$) was supplied by Bromine Compounds Ltd., Beer-Sheva. The reagents were used without further purification after gas chromatography failed to show any significant impurities. Properties of the pure components appear in Table I.
Apparatus and Procedure. An all-glass modified Dvorak and Boublik recirculation still (7) was used in the equilibrium determination. The experimental features have been described

Table I. Physical Properties of Pure Compounds

compd	refractive index at $20^{\circ} \mathrm{C}$	bp, ${ }^{\circ} \mathrm{C}$
propyl bromide (1)	1.4316^{a}	70.55^{a}
	1.4317^{b}	70.8^{b}
acetic acid (2)	1.3717^{a}	117.0^{a}
	1.3716^{b}	117.1^{b}
propionic acid (3)	1.3860^{a}	140.85^{a}
	1.3865^{b}	140.83^{b}
a This work. ${ }^{b}$ Reference 16.		

in previous publications (3-5). All analyses were carried out by gas chromatography on a Packard-Becker Model 417 apparatus provided with a thermal conductivity detector and an Autolab Model 6300 electronic integrator. The column was 200 cm long and 0.2 cm in diameter, was packed with SP-1200 on 80-100 mesh Supelcoport, and was operated isothermally at $75^{\circ} \mathrm{C}$. Injector and detector temperatures were 200 and 210 ${ }^{\circ} \mathrm{C}$, respectively. Very good separation was achieved under these conditions, and calibration analyses were carried to convert the peak ratio to the weight composition of the sample. Concentration measurements were accurate to better than $\pm 1 \%$. The accuracy in determination of pressure and temperature was $\Delta P= \pm 2 \mathrm{mmHg}$ and $\Delta t= \pm 0.02^{\circ} \mathrm{C}$.

Results

The temperature-concentration measurements at 760 mmHg for the systems under consideration are presented in Tables III-V. Preliminary calculations showed that the activity coetficients calculated without taking into account the assoclation effects were thermodynamically inconsistent. Fatty acids are known to undergo extensive association already at room temperature so that the real species present in the system are different from the nominal ones. The mathematics of associ-

Table II. Vapor Pressure Constants

compd	$\alpha_{i}{ }^{a}$	$\beta_{i}{ }^{a}$	$\delta_{i}{ }^{a}$	ϵ_{i}
propyl bromide	6.91065	1194.889	225.51	ω_{i}
acetic acid	14.39756	9399.86	698.0	-10.4205^{b}
propionic acid	7.5476	1617.06	205.67	-10.8340^{c}
${ }^{\boldsymbol{c}}$ Reference 16. ${ }^{b}$ Reference 17.	${ }^{c}$ Reference 18.			3166.0^{b}

ation in multicomponent systems has been described previously ($1,8,9$) and will be summarized briefly for ternary systems. Assume species A, B, C, where A is the most volatile component. Species B and C undergo homodimerization between monomers, namely, $\mathrm{B}_{1}+\mathrm{B}_{1} \rightleftarrows \mathrm{~B}_{2}$ and $\mathrm{C}_{1}+\mathrm{C}_{1} \rightleftarrows \mathrm{C}_{2}$. In addition, species B and C react among themselves to form a heterodimer $B_{1}+C_{1} \rightleftarrows B C$. A more complex scenario will be one in which A also participates in the reactions. This point will be elaborated later on. Mathematical analysis of the different equilibria, coupled with a mass balance, yields the following system of three nonlinear equations (2):

$$
\begin{equation*}
F_{A}-y_{A}\left[P+K_{\mathrm{BB}} \Phi_{\mathrm{B}} F_{\mathrm{B}}^{2}+\kappa_{\mathrm{CC}} \Phi_{\mathrm{C}} F_{\mathrm{C}}^{2}+\bar{K}_{\mathrm{BC}} F_{\mathrm{B}} F_{\mathrm{C}}\right]=0 \tag{1.1}
\end{equation*}
$$

$$
\begin{align*}
\left(2-y_{\mathrm{B}}\right) K_{\mathrm{BB}} \Phi_{\mathrm{B}} F_{\mathrm{B}}^{2}+F_{\mathrm{B}}\left[1+\left(1-y_{\mathrm{B}}\right) \bar{K}_{\mathrm{BC}} F_{\mathrm{C}}\right]- \\
y_{\mathrm{B}}\left[P+K_{\mathrm{CC}} \Phi_{\mathrm{C}} F_{\mathrm{C}}^{2}\right]=0 \tag{1.2}\\
\left(2-y_{\mathrm{C}}\right) K_{\mathrm{CC}} \Phi_{\mathrm{C}} F_{\mathrm{C}}^{2}+F_{\mathrm{C}}\left[1+\left(1-y_{\mathrm{C}}\right) \bar{K}_{\mathrm{BC}} F_{\mathrm{B}}\right]- \\
y_{\mathrm{C}}\left[P+K_{\mathrm{BB}} \Phi_{\mathrm{B}} F_{\mathrm{B}}^{2}\right]=0 \tag{1.3}
\end{align*}
$$

where for $i=\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
\begin{gather*}
F_{l}=\gamma_{l} \times P_{l}^{\circ} / E_{l} \tag{2}\\
E_{l}=\exp \left[\left(P-P_{l}^{\circ}\right)\left(b_{l}-V_{l}^{\mathrm{L}}\right) / R T\right] \tag{3}\\
\Phi_{l}=\exp [b, P / R T] \tag{4}
\end{gather*}
$$

for $i=\mathrm{B}, \mathrm{C}$
$P_{i_{1}}^{0}=P^{\circ},\left(\frac{-1+\left(1+4 K_{1} P^{0}, \exp \left[b P^{0} / / R T\right]\right)^{1 / 2}}{2 K_{l} P^{0}, \exp \left[b P^{0}, / R T\right]}\right)$
in addition

$$
\begin{gather*}
\bar{K}_{\mathrm{BC}}=K_{\mathrm{BC}} \Phi_{\mathrm{B}} \Phi_{\mathrm{C}} / \Phi_{\mathrm{BC}} \tag{6}\\
\Phi_{\mathrm{BC}}=\exp \left[\left(b_{\mathrm{B}}^{1 / 3}+b_{\mathrm{C}}^{1 / 3}\right)^{3} P /(8 R T)\right] \tag{7}
\end{gather*}
$$

For ideal gaseous mixtures and low pressures the values of E_{i} and the fugacity coefficients may be assumed to be unity. Equations 1-7 can be easily applied to a binary system where one or both components undergo association.

For the calculation of the vapor pressure of the pure species, P_{j}°, and the association constants K_{j}, the following expressions were employed:

$$
\begin{gather*}
\log P^{\circ}=\alpha_{l}-\beta_{l} /\left(t+\delta_{l}\right) \tag{8}\\
\log K_{l \prime}=\epsilon_{l}+\omega_{l} / T \tag{9}
\end{gather*}
$$

The pertinent constants are reported in Table II, with P°, in mmHg and $K_{\|}$in mmHg^{-1}.
As no rellable data were available for the heterodimerization constant, they were estimated by

$$
\begin{equation*}
K_{l j}=2\left(K_{k} K_{j j}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

Assoclation of propyl bromide with itself or with the fatty acids was also investigated since dipole-dipole interactions can be expected. The pertinent constants are unknown and were estimated by the method proposed by Nothnagel, Abrams, and Prausnitz (10). Calculation of the pertinent activity coefficients

Table III. Vapor-Liquid Equilibrium and Activity Coefficients for the System Propyl Bromide (1)-Acetic Acid (2)

temp, ${ }^{\circ} \mathrm{C}$	x_{1}	y_{1}	γ_{1}	γ_{2}
109.90	0.022	0.171	3.863	0.9996
109.50	0.025	0.185	3.684	0.9954
107.85	0.032	0.225	3.570	0.9909
104.56	0.045	0.285	3.392	1.000
103.62	0.050	0.305	3.313	1.001
101.30	0.060	0.350	3.289	1.003
99.25	0.072	0.390	3.159	1.007
96.80	0.085	0.435	3.116	1.012
96.50	0.088	0.440	3.062	1.014
95.75	0.095	0.450	2.946	1.024
92.67	0.115	0.515	2.933	1.016
91.00	0.135	0.540	2.712	1.036
89.30	0.155	0.570	2.577	1.048
88.25	0.165	0.585	2.541	1.057
85.38	0.205	0.630	2.341	1.090
84.55	0.220	0.645	2.271	1.099
84.50	0.225	0.648	2.231	1.102
84.06	0.232	0.657	2.212	1.103
83.05	0.275	0.670	1.948	1.164
82.20	0.285	0.685	1.956	1.165
80.55	0.310	0.710	1.935	1.186
79.78	0.345	0.725	1.804	1.228
78.05	0.420	0.755	1.602	1.338
75.52	0.540	0.800	1.397	1.572
74.83	0.590	0.815	1.321	1.707
73.89	0.650	0.835	1.253	1.904
72.85	0.748	0.865	1.150	2.397
72.40	0.785	0.885	1.127	2.576
71.60	0.855	0.925	1.090	3.001

Figure 1. Propyl bromide-acetic acid boiling-point diagram.
indicated that assumption of propyl bromide participation in the different possible reactions either did not improve or affected adversely the consistency quality of the data. It was then decided to assume that propyl bromide plays a passive role in these reactions.

Activity coefficients were hence calculated by solution of the proper equations in set 1-10, and the pertinent results are reported in Tables III-V.

Flgure 2. Propyl bromide-acetic acid activity coefficients.
We will now analyze some of the most important features.
Propyt Bromide-Acettc Actd. The vapor-llquid equilibria and the activity coetficients calculated by assuming association of the acid alone appear in Table III and Figures 1 and 2. Area tests for the indluldual activity coefficients, as well as their ratio, showed that the data were thermodynamically consistent.

Propyl Bromide-Proplontc Acld. The pertinent vapor-liquid equilibrlum data appear in Table IV. The values of the actuity coefficients calculated according to eq 1-10 are also reported in Table IV; these do not satisty the area test for thermodynamic consistency. We assume that experimental errors are not a main source of inconsistency because, in spite of rechecking the analytical procedure and duplication of experiments, we observed a normal scattering of x, y points. Further testing indicated that assuming dimerization and/or heterodimerization of propyl bromide yleids activity coefficients that are even more inconsistent. We then tested the possibility that, although propyl bromide has a passive role, it may affect the association characteristics of propionic acid, similar to the behavior reported by Posch and Kohler (11) for acetic acid and solvents. No improvement was observed. The next examination was performed by assuming that heat effects are present in the system. In this case the usual area and slopes tests based on the Gibbs-Duhem restriction are not valld. Since no data were avallable, it was decided to test the data according to Herrington's criterium (12). Herrington has suggested for systems with heat effects that the following two quantities be compared:

$$
\begin{gather*}
\mathbf{D} \equiv\left|\frac{\text { area above } x \text { axis }- \text { area below } x \text { axis }}{\text { area above } x \text { axis }+ \text { area below } x \text { axis }}\right| \tag{11}\\
\mathrm{J}=150\left|T^{\circ}{ }_{1}-T^{\circ}{ }_{2}\right| / T_{\text {mm }}^{\circ} \tag{12}
\end{gather*}
$$

where $T^{\circ}{ }_{1}$ and $T^{\circ}{ }_{2}$ are the boiling points of the pure components and $T^{\circ}{ }_{\mathrm{mm}}$ is the lowest boiling point in the full composition range. The constant 150 is empirical, based on Herrington's

Table IV. Vapor-Liquid Equilibrium and Activity Coefficients for the System Propyl Bromide (1)-Propionic Acid (3)

temp, ${ }^{\circ} \mathrm{C}$	x_{1}	y_{1}	$\begin{gathered} \text { partly associated, } \\ \text { eq } 19 \end{gathered}$		fully associated	
			γ_{1}	γ_{2}	γ_{1}	γ_{2}
138.17	0.005	0.055	2.730	1.008	3.757	0.9916
137.10	0.007	0.076	2.737	1.012	3.718	0.9895
134.80	0.019	0.185	2.456	0.9592	3.178	0.9298
131.20	0.024	0.216	2.448	1.008	3.092	0.9593
130.80	0.027	0.230	2.323	1.004	2.919	0.9545
129.60	0.032	0.260	2.250	1.001	2.789	0.9479
128.60	0.035	0.260	2.110	1.027	2.607	0.9667
121.10	0.065	0.410	2.013	1.037	2.340	0.9570
118.40	0.080	0.455	1.903	1.052	2.176	0.9650
116.50	0.088	0.495	1.940	1.044	2.190	0.9563
112.70	0.105	0.540	1.916	1.081	2.127	0.9817
113.10	0.108	0.545	1.856	1.066	2.061	0.9709
107.75	0.140	0.620	1.811	1.096	1.965	0.9930
105.50	0.165	0.655	1.696	1.111	1.824	1.006
102.50	0.190	0.705	1.680	1.102	1.786	1.002
98.40	0.225	0.780	1.697	1.042	1.777	0.9601
96.25	0.245	0.790	1.667	1.093	1.739	1.003
93.25	0.270	0.800	1.658	1.180	1.723	1.074
91.30	0.295	0.810	1.616	1.240	1.674	1.126
91.00	0.310	0.825	1.570	1.210	1.623	1.107
90.50	0.311	0.830	1.593	1.205	1.645	1.102
90.45	0.315	0.835	1.581	1.190	1.632	1.092
90.42	0.330	0.825	1.499	1.265	1.549	1.154
89.28	0.345	0.840	1.498	1.257	1.544	1.152
88.26	0.360	0.865	1.506	1.183	1.547	1.099
85.30	0.415	0.880	1.439	1.297	1.472	1.204
85.83	0.415	0.860	1.396	1.412	1.432	1.293
85.73	0.425	0.870	1.377	1.374	1.411	1.267
84.90	0.455	0.870	1.318	1.481	1.350	1.361
82.10	0.515	0.905	1.296	1.469	1.320	1.379
80.98	0.540	0.890	1.264	1.752	1.289	1.610
79.90	0.570	0.905	1.250	1.760	1.272	1.634
79.55	0.580	0.910	1.246	1.758	1.267	1.640
77.80	0.640	0.920	1.198	1.999	1.216	1.873
76.56	0.700	0.935	1.149	2.180	1.164	2.077
75.85	0.715	0.938	1.152	2.273	1.166	2.169
76.70	0.725	0.935	1.105	2.369	1.119	2.258
75.82	0.725	0.930	1.131	2.545	1.146	2.395
74.95	0.755	0.940	1.123	2.658	1.136	2.534
74.68	0.775	0.945	1.107	2.762	1.119	2.656
73.30	0.805	0.948	1.115	3.202	1.126	3.076
72.55	0.837	0.949	1.098	3.869	1.109	3.710

analysis of typical heat of mixing data. Herrington suggests that, if $|\mathrm{D}-\mathrm{J}|<10$, the data are probably consistent. Application of the data given in Table IV yields $\mathbf{D}=42.6$ and $J=30.44$ so that according to Herrington the data are inconsistent. An interesting feature of this system is that, if propionic acid is assumed to be fully dimerized, D decreases to 25.4 so that the data become consistent. Both sets of γ_{l} are shown in Table IV.

Propyl Bromide-Acetlc Acld-Proplonic Acld. The $T-x-y$ data are reported in Table V. On the basis of what was learned from the binary systems, the activity coefficients were calcualted by assuming a passive role for propyl bromide and dimerization constants expressed by eq 9 and 10. The results appear in Table V.

Thermodynamic consistency was tested by the McDer-mott-Ellis (13) method, by which two experimental points a and b are consistent if the following condition is fulfilled:

$$
\begin{equation*}
\mathrm{D}<\mathrm{D}_{\max } \tag{13}
\end{equation*}
$$

The local deviation D is given by

$$
\begin{equation*}
\mathrm{D}=\sum_{l=1}^{n}\left(x_{l \mathrm{a}}+x_{i \mathrm{~b}}\right)\left(\ln \gamma_{i \mathrm{~b}}-\ln \gamma_{i \mathrm{a}}\right) \tag{14}
\end{equation*}
$$

Table V. Vapor-Liquid Equilibrium and Activity Coefficients for the Ternary System Propyl Bromide (1)-Acetic Acid (2)-Propionic Acid (3)

Table VI. Wilson Parameters

system		$\overline{\bar{D}}_{y_{1}-}^{-}$ (eqn 24), $\mathrm{D}_{\gamma_{1}}$,		
propyl bromide (1)-	0.3115^{a}	1.2064^{a}	1.88	
acetic acid (2)	0.2522^{b}	0.9743^{b}		
propyl bromide (1) -	0.4790^{a}	1.1730^{a}	4.43	
propionic acid (3)	0.2801^{b}	1.4793^{b}		
acetic acid (2)-	2.7500^{a}	0.4374^{a}	3.92	
propionic acid (3)	3.3487^{b}	0.0155^{b}		5.22

${ }^{a}$ Based on eq 18 and 19. ${ }^{b}$ Based on the ternary system data only and eq 20 , with $\overline{\mathrm{D}}_{y_{1}}=7.79 \%$ and $\overline{\mathrm{D}}_{y_{2}}=10.5 \%$. ${ }^{c}$ Based on $\operatorname{Min}\left(G_{\text {exptl }}^{\mathrm{E}}-G_{\text {calcd }}^{\mathrm{E}}\right)^{2}$.

According to ref 13 a flxed value for $D_{\max }$ is recommended; however, a better criterium is to use the following expression (3):

$$
\begin{align*}
\mathrm{D}_{\max } & =\sum_{l=1}^{N}\left(x_{i \mathrm{a}}+x_{i \mathrm{~b}}\right)\left(\frac{1}{x_{i \mathrm{a}}}+\frac{1}{y_{l \mathrm{a}}}+\frac{1}{x_{i \mathrm{~b}}}+\frac{1}{y_{l \mathrm{~b}}}\right) \Delta x+ \\
& 2 \sum_{l=1}^{N}\left|\ln \gamma_{l \mathrm{~b}}-\ln \gamma_{l \mathrm{a}}\right| \Delta x+2 \sum_{l=1}^{N}\left(x_{i \mathrm{a}}+x_{l \mathrm{~b}}\right) \frac{\Delta P}{P}+ \\
& \log \theta \sum_{l=1}^{N}\left(x_{l \mathrm{a}}+x_{l \mathrm{~b}}\right) B_{l}\left(\frac{1}{\left[t_{\mathrm{a}}+C_{l}\right]^{2}}+\frac{1}{\left[t_{\mathrm{b}}+C_{l}\right]^{2}} \Delta t\right. \tag{15}
\end{align*}
$$

In this work, the errors in the measurements were estimated to be $\Delta P= \pm 2 \mathrm{mmHg}, \Delta t= \pm 0.02{ }^{\circ} \mathrm{C}$, and $\Delta x= \pm 0.004$ mole fraction units.

All of the data reported in Table V satisty the McDermott-Ellis test.

Correlation of Activty Coeffictents. UNIFAC (6). The data for the binary system propyl bromide (1)-acetic acid (2) were used to determine the following interaction parameters:

$$
\begin{align*}
& a(\mathrm{COOH}, \mathrm{Br})=280.6 \tag{16}\\
& a(\mathrm{Br}, \mathrm{COOH})=279.0 \tag{17}
\end{align*}
$$

With these parameters the activity coefficients can be reproduced with a mean percent deviation of 5%. When they were used for prediction of the activity coefficients of the binary propyl bromide (1)-propionic acid (3), it was found that calculated values in the range $0.04<x<0.55$ were within 8% of the experimental ones, but outside the range the error grew to $10-20 \%$, particularly in the $x_{i}<0.01$ range. For this reason the values given in eq 16 and 17 should be considered only provisional, until additional experimental data be collected.

Wison (14). The experimental data for the two new binarles were correlated by the Wilson equation
in $\gamma_{i}=-\ln \left(x_{i}+\Lambda_{i j} x_{j}\right)+x_{j}\left[\frac{\Lambda_{i j}}{x_{i}+\Lambda_{i j} x_{j}}-\frac{\Lambda_{j}}{\Lambda_{j} x_{l}+x_{j}}\right]$
$\ln \gamma_{j}=-\ln \left(x_{j}+\Lambda_{j} x_{i}\right)-x_{i}\left[\frac{\Lambda_{i j}}{x_{i}+\Lambda_{j j} x_{j}}-\frac{\Lambda_{j}}{\Lambda_{j l} x_{i}+x_{j}}\right]$
If one uses as an objective funciton (OF) one that will minimize the error in the prediction of the vapor composition (15)

OF $=\sum_{k=1}^{m}\left(\frac{y_{1, \text { expt }}-y_{1, \text { calcd }}}{y_{1, \text { expt }}}\right)_{k}^{2}+\sum_{k=1}^{m}\left(\frac{y_{2, \text { expt }}-y_{2, \text { calcd }}}{y_{2, \text { expt }}}\right)_{k}^{2}$
The pertinent parameters $\Lambda_{i j}$ and Λ_{f}, together with the mean percentage deviation of y_{1} predicted, are reported in Table VI. The table also contains for the sake of comparison the values of the parameters for the system acetic acid (2)-propionic (3) as calculated by eq 20 or an objective function based on minimizing $\left|G^{E}{ }_{\text {expt }}-G^{E}{ }_{\text {caicod }}\right|^{2}(9)$, and the Wilson parameters obtained directly from only the data of the ternary system. For the latter parameters, $\Lambda_{i j}$ and Λ_{j} (in the general Wilson's equation for in $\gamma_{\text {i }}$ for multicomponent mlxtures) are not binary constants but multicomponent parameters determined directly from the data of the mixture of the highest order.

Bolling Points. The boiling points of the binary and ternary systems have been correlated by using two different expressions: (a) The first is an equation for correlating the boiling points of multicomponent mixtures based on the complete data (binary, ternary, etc.), as developed in ref 9 . For a ternary mixture ($N=3$) it reads

$$
\begin{align*}
T= & \sum_{l=1}^{N} x_{i} T_{i}^{0}+\sum_{l=1}^{N-1} \sum_{j=1+1}^{N} x_{i} x_{j}\left[A_{l j}+B_{l j}\left(x_{i}-x_{j}\right)+\right. \\
& \left.C_{i j}\left(x_{i}-x_{j}\right)^{2}+\ldots\right]+x_{1} x_{2} x_{3}\left[A+B\left(x_{1}-x_{2}\right)+\right. \\
& C\left(x_{1}-x_{3}\right)+D\left(x_{2}-x_{3}\right)+\ldots+ \\
& \left.B^{\prime}\left(x_{1}-x_{2}\right)^{2}+C^{\prime}\left(x_{1}-x_{3}\right)^{2}+D^{\prime}\left(x_{2}-x_{3}\right)^{2}+\ldots\right] \tag{21}
\end{align*}
$$

The pertinent coefficients appear in Table VII. (b) The second is an equation which relates the boiling point of the multicomponent mixture directly from the data without recourse to low-er-order systems (see ref 15):

$$
\begin{align*}
T= & \sum_{i=1}^{N} x_{l} T^{\circ}+ \\
& \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} x_{i} x_{j}\left[A_{l j}+B_{l j}\left(x_{l}-x_{j}\right)+C_{l j}\left(x_{i}-x_{j}\right)^{2}+\ldots\right] \tag{22}
\end{align*}
$$

Coefficients $A_{i j}, B_{i j}$, etc., are not binary constants; they are multicomponent parameters determined directly from the data. The pertinent parameters appear in Table VIII.

It should be noted that the approach of direct correlation suggested by Tamir (15) is more efficient than a correlation based on the complete data in two respects: (a) The number of parameters needed for representing T vs. x_{1} is smaller-for example, 9 instead of 16 parameters, as seen in Tables VII and VIII. (b) The goodness of fit is better as observed from the values of the error variance, $\sigma_{T}{ }^{2}$, and the mean percentage deviation, $\overline{\mathrm{D}}_{r}$, which are equal to 6.86 and 1.83% for 9 parameters and 7.57 and 2.01% for 16 parameters, respectively.

The above quantities are defined for an intensive or molar property M by

$$
\begin{gather*}
\sigma_{M}^{2}=\frac{\sum_{i=1}^{m}\left(M_{\text {expt }}-M_{\text {calcd }}\right)_{i}^{2}}{m-c-1} \tag{23}\\
\overline{\mathrm{D}}_{M}=\frac{1}{m} \sum_{i=1}^{m}\left|\left(M_{\text {expt }}-M_{\text {calcd }}\right) / M_{\text {calco }}\right| \tag{24}
\end{gather*}
$$

Table VII. Boiling-Points Correlation for Eq 21^{a}

system	$A_{i j}$	$B_{i j}$	$C_{i j}$	$D_{i j}$	$E_{i j}$
propyl bromide (1)-acetic acid (2)	-70.0342	53.1477	-35.1955	57.4628	-67.6993
propyl bromide (1)-propionic acid (3)	-94.2171	72.6357	-30.8799	20.7126	-89.9754
acetic acid (2)-propionic acid (3)		10.4722			
system		A	B	C	D
propyl bromide (1)-acetic acid (2)-propionic acid (3)		-69.9746	75.3070	247.176	-54.3069
d $=0.301 . \quad \sigma_{T}^{2}=7.57 . \quad \bar{D}_{T}=2.01 \%$.					

Table VIII. Parameters in Direct Correlation of
T-x Data for Eq $\mathbf{2 2}^{a}$

system		$A_{i j}$	$B_{i j}$	$C_{i j}$
propyl bromide-acetic acid	12	-71.5368	79.5414	-50.1714
acetic acid-propionic acid	13	-94.4513	104.4467	-86.8320
propionic acid-propyl bromide	23	-22.1129	3.1855	47.1385
$a_{\text {rmsd }}=0.277 . \quad \sigma_{T}{ }^{2}=6.86$ and $\overline{\mathrm{D}}_{T}=1.83 \%$.				

Figure 3. Ternary isotherms.
where $M=T, \gamma_{l}$, or $\gamma_{l} ; m$ and c are the number of data points and the number of parameters, respectively, corresponding to the mixture of the highest order. In other words, if binary plus ternary data are available, elther in direct correlation which considers only the ternary data or In indirect correlation which takes into account the complete information (binary plus ternary), $\sigma_{M}{ }^{2}$ and \bar{D}_{M} are computed from m and c which correspond to the ternary system. The procedure of determining the number of parameters is detailed in ref (15); however, It should be noted that the parameters reported in Tables VII and VIII correspond to the minimal value of $\sigma_{M}{ }^{2}$. The latter quantity, which is the measure of the spread of the error distribution, attains a minimum vs. the degrees of freedom $m-c-1$ and is used as a criterium for choosing the optimal number of parameters.
Ternary isotherms were calculated on the basis of eq 22 and appear in Figure 3.

Acknowledgment

Yehudit Reizner helped in the experimental work. Propyl bromide was donated by Bromine Compounds Limited, BeerSheva.

Clossary

A, A_{1}	species A, monomer of A
b	size parameter
B, B_{1},	specles B formed by $B_{1}+B_{2}$, monomer of B, dimer B_{2}

D
D
E_{1}
\bar{D}_{M}

F
K_{1}
K_{AA}
K_{BB},
K_{CC},
K_{BC}
P
total pressure, mmHg
$\begin{array}{ll}\mathrm{P}^{\circ}, & \text { vapor pressure of the pure species } i, \mathrm{mmHg} \\ \mathrm{Po}_{i,} & \text { vapor pressure of the pure monomer of species } i,\end{array}$ mmHg
$R \quad$ universal gas constant
rmsd
t, T
v
x_{i}, y_{i}
Φ
α_{i}, β_{i}, δ_{l}, ϵ_{l},
ω_{1}
Λ_{l}, Λ_{H}
Δx,
ΔP,
Δt
$\sigma_{M}{ }^{2}$
γ_{1}

Subscripts

calcd calculated
exptl experimental

LHerature Ched

(1) Tamir, A.; Wisniak, J. Chem. Eng. Sci. 1976, 31, 625.
(2) Tamir, A.; Wisniak, J. Ind. Eng. Chem. Fundam. 1976, 31, 274.
(3) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1977, $22,253$.
(4) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1978, $21,88$.
(5) Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1875, 20, 168.
(6) Skjold-Jorgensen, S.; Kolbe, B.; Gmehling, J.; Rasmussen, P. Ind. Eng. Chem. Process Des. Dev. 1979, 18, 714.
(7) Boubilkova, L.; Lu, B. C. Y. J. Appl. Chem. 1989, $19,89$.
(8) Marek, J.; Standart, G. Collect. Czech. Chem. Commun. 1854, 19, 1074.
(9) Tamir, A.; Wisnlak, J. Chem. Eng. Scl. 1975, 30, 336.
(10) Nothnagel, K. H.; Abrams, D. S.; Prausnltz, J. M. Ind. Eng. Chem. Process Des. Dev. 1873, 12, 25.
(11) Posch, H.; Kohler, F. Monatsh. Chem. 1987, 98, 1451.
(12) Herrington, E. F. G. J. Inst. Pet. 1851, 37, 457.
(13) McDermott, C.; Ellis, S. R. M. Chem. Eng. Scl. 1965, 20, 293.
(14) Wilson, G. M. J. Am. Chem. Soc. 1884, 86, 127.
(15) Tamir, A. Chem. Eng. Scl. 1961, 36, 1453.
(16) TRC Tabies, "Selected Values of Propertles of Chemical Compounds"; Thermodynamic Research Center Data Project, Texas A \& M Universlty: College Station, TX, 1961.
(17) Marek, J. Collect. Czech. Chem. Commun. 1935, $20,1490$.
(18) Tetsuo, I.; Fumltake, Y. J. Chem. Eng. Data 1883, 8, 315.

